
姓名:唐天力(Tianli Tang)
职称:讲师
职务:无
导师类别:
电子邮箱:TL.Tang@gdut.edu.cn
研究方向:智能交通系统、城市公共交通、交通大数据及出行行为分析
招生专业:
1. 个人简介(300字内)
唐天力,广东工业大学 “青年百人计划A类(有条件)”特聘教师,于大连理工大学获工学学士学位、英国利兹大学获哲学博士学位,并在东南大学交通学院完成博士后研究工作。研究方向聚焦于智能交通系统、城市公共交通、交通大数据及出行行为分析等领域,特别关注运用数据科学、人工智能和机器学习等前沿技术方法,结合复杂系统理论与网络科学,推动城市交通系统的优化与智慧化发展。近年来,主持教育部和江苏省科研项目2项,主导校企合作横向课题2项,参与国家级自然科学基金项目4项,在交通领域国际权威期刊及学术会议发表论文20余篇。
2. 学习与工作经历
2025.01至今 广东工业大学bet356平台首页 讲师
2021.07-2025.01 东南大学交通学院 博士后、助理研究员
2016.10-2016.03 英国利兹大学交通研究所 哲学博士
2012.09-2016.06 大连理工大学交通运输学院 工学学士
3. 学术兼职
世界交通运输大会第三届学部委员会交通工程学部交通建模与仿真学科新兴出行模式与行为建模技术委员会青年委员
Transportation Research Part C、Multimodal Transportation期刊客座编辑
Transportation Research Part系列,IEEE transaction on ITS等期刊审稿人
中国人工智能学会 会员
5.期刊论文
[1] Tang, T., Zhang, J.*, Chen, S., Mo, P., Pei, M. and Tang, T.-Q. 2025. Deciphering the pulse of the city: An exploration of the natural features of metro passenger flow using XAI. Computers & Industrial Engineering. 204, p.111097.
[2] Tang, T., Liu, R.*, Marsden, G., Gu, Z. and Fu, X. 2025. The battle for kerbside space: An evaluation of the competition between car-hailing and bus services. Transportation Research Part A: Policy and Practice. 192, p.104392.
[3] Tang, T., Mao, J., Liu, R.*, Liu, Z.*, Wang, Y. and Huang, D. 2024. Origin-Destination Matrix Prediction in Public Transport Networks: Incorporating Heterogeneous Direct and Transfer Trips. IEEE Transactions on Intelligent Transportation Systems., pp.1–15.
[4] Rui, Y.-X., Shi, J.-Q., Liao, P., Zhang, J. and Tang, T.* 2024. An extended cellular automation model for bicycles with group and retrograde behaviors at signalized intersections. Simulation Modelling Practice and Theory. 136, p.103004.
[5] Tang, T., Gu, Z.*, Yang, Y., Sun, H., Chen, S. and Chen, Y. 2024. A data-driven framework for natural feature profile of public transport ridership: Insights from Suzhou and Lianyungang, China. Transportation Research Part A: Policy and Practice. 183, p.104049.
[6] Tang, T., Zhong, S.*, Chen, Y. and Luo, L. 2024. Accounting for taxi service conditions in estimating route travel time from floating car data using Markov chain model. Multimodal Transportation. 3(4), p.100172.
[7] Tang, T., Liu, R.*, Choudhury, C., Fonzone, A. and Wang, Y. 2023. Predicting hourly boarding demand of bus passengers using imbalanced records from smart-cards: A deep learning approach. IEEE Transactions on Intelligent Transportation Systems. 24(5), pp.5105–5119.
[8] Wang, Y. and Tang, T.* 2023. A simulation-based model for evacuation demand estimation under metro unconventional emergencies. Journal of Transportation Engineering, Part A: Systems. 149(7), pp.1–14.
[9] Tang, T., Fonzone, A., Liu, R.* and Choudhury, C. 2021. Multi-stage deep learning approaches to predict boarding behaviour of bus passengers. Sustainable Cities and Society. 73, p.103111.
[10] Tang, T., Liu, R.* and Choudhury, C. 2020. Incorporating weather conditions and travel history in estimating the alighting bus stops from smart card data. Sustainable Cities and Society. 53, p.101927.
9.我的团队
欢迎对交通大数据挖掘与智能分析、城市公共交通优化与智慧调度、基于AI的出行行为建模与仿真等领域感兴趣的同学报考研究生。团队提供深度学习计算平台与真实交通数据集支持,鼓励跨学科探索与实践应用。